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The problem considered here has immediate application to the calculation 

of modern telescopic reflectors. For large telescopes, the bending of the 

reflecting surface of the mirror under its own weight leads to inadmis- 

sible distortion of the image. Special loading systems are used to reduce 

these bending deflections. The mirror is attached to the telescope tube 

at three points by hinged supports and on the back surface there is 

applied a system of unloading forces which act to reduce the bending of 

the mirror under its own weight. This suspension system permits the use 

of mirrors of admissible weight but with bending of the mirror surface 

not in excess of acceptable values. The mirror, from a mechanical point 

of view, is a continuous or a ribbed plate. For large mirrors, small 

errors in the unloading forces may lead to an inadmissible image surface 

distortion. 

The solution given here may be applied to determine the normal de- 

flections of a mirror (considered as a plate) under the action of in- 

correct unloading forces. 

1. We denote by a(%, c) the function for determination of the support 

conditions of the plate. This function denotes the normal deflection of 

the plate at a point X, a two-dimensional vector coordinate, due to 

application of unit concentrated force perpendicular to the plate at the 

point 4. The bending deflection of the plate under the action of a system 

of concentrated forces pi at points Ej has the form 

(1.1) 

Ye assume that the values of the forces pi may have any value in the 

range ( -u ., + cs .), where o- is some positive value. It is required to 

determine !he miximum absolute deflection of the plate with the most un- 

favorable values of pi. Denote this deflection by l/. For its determination 
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we have 

U = max 1 W (2, pj) 1 

Here s is the set of all points in the 
middle surface of the Plate. 

Since the bending of the plate. repre- 
sented by the function v(x, Pi), iS COn- 
tinuous, an investigation of the maximum 
]wl must lead to two cases: First the 
maximua Iw] is found for all variations 

in Pj* snd then for variations in x 
(1.3 

U = max, maxp 1 W (z, Pj) 1 (%Esv I PjlBOj 1 

Then internal maximum is easily determined if the deflection is re- 
presented by (1.1): 

maxr 
Ix 

a(5* 5j)Pj =Z]ta(‘, Ejli’j 
I 

(Pj < bj) 

j j 

(1.4) 

Actually, the modulus of the sum achieves its largest value when all 
terms take their largest values and have the same sign. Thus 

u =: max, XI @ (2, 5j) 1 Qj 

2. Tn the case of a large number of forces there is small probability 
of their being distributed in the most unfavorable manner. A more natural 
assumption is that the forces pi are independent and have random 
values. 

We determine the statistical characteristics of the plate deflection. 
We assume in addition to the above that the forces pi are distributed 
according to a normal law with a mathematical expectation of zero and 
dispersion Dj. Since the plate deflection is a homogeneous linear func- 
tion of the forces pj, it is also distributed according to a normal law, 
with mathematical expectation of zero. The mean square value of deflec- 
tion A(z) is given by the following formula 111: 

AS a qualitative estimate of the error in deflection, one may use the 
maximum value of the doubled mean square 
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K = 2 max A (z) (z E s) (2.2) 

since for a normal distribution random values of W(X) with a pro- 

bability of 0.95 are included in the interval [ -PA, tzA(x)l . 

3. We construct the influence function for a plate of constant stiff- 

ness D, hinge supported at three points A, R and C as shown in Fig. 1. 

The edge of the plate is assumed to be free of forces and moments, and 

the deflection of the plate at points A, B and C is equal to zero. The 

supports are at a distance aR from the center, where R is the plate 

radius and a is a ratio. 

For determination of the influence function one must find the plate 

deflection at a poirt with coordinates rR, 8 under the action of unit 

concentrated force at the point P (Fig. 1) with coordinates pR, 9, and 

the support reactions A, B and C which in view of equilibrium conditions 

have the following values: 

The problem of plate deflections under any system of arbitrarily dis- 

tributed concentrated forces was considered by Lur’e [21, by Bassali [31, 

and others, and the solution for the problem here discussed may be ob- 

tained as a special case of the corresponding expressions in [d and [21. 

Nevertheless, it is expedient to obtain the solution by means of some 

evident simplifications arising from symmetry in the location of supports 

A, B and C. The expression for the influence function will be sought in 

the form 

Here ~‘~~/8~D is a particular solution of the equation for plate bend- 

ing, taking into account the action of the concentrated forces 

and P* is a biharmonic function with no singularities in derivatives with 

respect to either r or 0, up to the third order in the entire region 
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r < 1. 

We take an expression for I* in the form of a series 

w* = R. + 2 (R, cos n6 + R,‘sin n8) 

861 
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(3.5) 

R, = (A, + B,r2) rn (n = 0, I. 2.. .)p R,’ = (A,’ + I?,‘+) rn (R = ?. 2, . . .) 

By making use of the known expansion 

w 1 In 2 = In r - 2 n (4)” cos n (0 - cp) (r > P) 
?I=1 

(3.6) 

as well as the expression for support reactions according to (3.1). we 

obtain an expression for w. in Fourier series in the angle 8, which holds 

for r > p, a: 

w0 = (P2 - 4 (In r + I) - T$ (p’ - aZ) (Cos 0 cos q + sin 0 sin 9) + 

+ 5 + (cm nf3 [ (+)” (A - *) ~0s ncC - (p)” (A - &) [in_7 +(3.7) 
?I=2 - * 

+ sin&l +- 
it I( P P ‘1. a n + US 

--- 
n-l ,L + 1 / :~TI ncp - r ( Ii - - n i 5J n-l 

The notation 

c, -I-;- $ cos cp ( “ICI, 
I ) 1 i kn ’ 

- cos -zj- + - 11 + 2 cos. 
3 \ 3 

S, = iJ- 1/3 qin g, sin F 

has been introduced here. 

Since the edge of the plate is free of forces and bending moments, it 

is necessary to satisfy the following conditions 141: 

Substitution of Expression (3.2) for the influence function into 

(3.3), taking account of the expansions referred to, leads to a system 

of equations for the values of A,, and Bn. The solution of this system is 
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I-V 
B, = 2 (1 + y) (P’ - u’) 

I-v 
B1=,---- 

l-v 
4(3-v) I’ (p” -a”) cos I$, &’ = 2 (3 + ,,) P (P2 -a”) sin cp when n > 2 

P2 _-- 
n+l 

n+l A,’ zz -- 
3+v 1 

n Bn’ + l--y n2(lr-_) (P” sin nq - anSn) 

To find the constants A,,, Al, and A,‘, we write .w* in the form 

w*=Ao+(A~cos0+Al’sin8)r+v (3.9) 

where we have 

00 

v= 5 (An cos n6 + A,’ sin n0) rA + x (B, cos n0 + I?,’ sin nl3) rnS2 (3.10) 
n=2 n=o 

corresponding to Formula (3.5). 

We substitute (3.9) in (3.2) and satGsfy the support conditions at the 

points A, B and C: 

A o-l-AI~+~,(A)+~(A)=O 

.4,+A~acos~+Al’sin~+q,(B)+v(B)=0 

A, + Ala cos $ - Al’ sin ‘F + q(c)+u(c)=o 

(3.11) 

Here wO(A), . . . . u(C) are values of the functions w0 and u at the 

points A(r = (1. 0 = 0)) B(r = a, 8 = 2x/3), and C( r = a, 8 = - 2~/3). 

The solution of the system (3.11) is 

-% = - f 1% (A) + %(B) i- w. (CJ] - G [v (A) + v (B) + u (C)] 

Al’ zx - & [wo (B) - U‘O CC) -I- v (B) - v (C)l (3.12) 

A1 = - -+ [A ” _t u’o (A) -I- v (A)] 

Thus, all values of the quantities An, Bn, A,‘, B”’ entering into the 
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expression for W* have been found; W* is evidently a function of the co- 

ordinates of the point of application (p, 9) 

force. Therefore 

of the unit concentrated 

w = w (I’, 8; p, cp) 

4. Equation (1.5) simplifies when uj = a0 = const. In addition, if the 

forces pi are applied to the plate at points of a regular network in 

large number, the sum may be approximated by an integral 

where S is- the plate area, R the full number 

eluding the support reactions, and dc is the 

(5 E 8) (4.1) 

of concentrated forces in- 

differential of area. Sub- 

stitution of the integral for the sum facilitates the calculation to.a 

certain extent, since the integral does not take into account the actual 

system of forces applied to the plate (at the corners of a square, tri- 

angle, or other network). It is evident that the error introduced by this 

substitution is small, when n is large. 

By substitution of Expression (3.2) into (4.1) with de = R2pdpdT, we 

obtain 

1 57 

u = R2con 1 ( ss I * (r, 0; P, ‘~1 I v-Q+ 1 ( r,<l \ 
max - 

&CD 2-c 1~10) 
(4.2) 

0 --x 

Numerical calculation shows that the quantity in curved brackets 

achieves its maximum value at points 1, 2 and 3. Therefore 

u _ RaGon 11, 

8nD 
Iw(i, =: P, cp)lpdWp 

) 
!4.3) 

0 --x 

Since the influence function depends on a, y is a function of a. The 

relation is shown in Fig. 2. 

Analogous considerations lead to the expressions 

,. n 

xc __!_ ’ ( JS ‘I2 

n [w (1, fi; P, cp)Y wf@p 1 (4.4) 
0 -7. 

(Do = Dj = constr) 

The relation of x to a is shown also in Fig. 2. 

For application to the problem of unloading a telescope mirror one 
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must set 
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Fig. 2. 

P 2 
qJ= 78’ (4.5) 

where P is the weight of the mirror, 6 

and E are maximum and mean square errors 

in the unloading forces. Substitution of 

(4.5) into Formulas (4.3) and (4.4) gives 

the following results: 

Using the Formulas (4.6). calculations 

were made for three mirrors (R = 1.35, 

3.06, 2.55)) supposed to be continuous 

plates of constant thickness, with the material constants: density 2.25 

g/cm3, Young’s modulus 0.7 x lo6 kg/cm2, Poisson’s ratio 0.25. In addi- 

tion, it was supposed that E = 0.25 x 10e2, 6 = 0.5 x 10e2, V = 5 x 
10-6 cm. 

Results of the calculation for II and K are as follows: 

R..W Ra, M a h,.u n u/v P/v 

1.35 0.78 0.58 0.336 27 1.29 0.46 
3.05 1.83 0.60 1 50 3.87 0.95 
2.55 1.53 0.60 0.65 36 4.45 1.28 

If the allowable mirror deflection is V, then even for such small 

errors in the unloading forces as were taken into account, the mirror de- 

flections have values of the same order as those assumed. 
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